skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Jiahui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we study the nonlinear inverse problem of estimating the spectrum of a system matrix, that drives a finite-dimensional affine dynamical system, from partial observations of a single trajectory data. In the noiseless case, we prove an annihilating polynomial of the system matrix, whose roots are a subset of the spectrum, can be uniquely determined from data. We then study which eigenvalues of the system matrix can be recovered and derive various sufficient and necessary conditions to characterize the relationship between the recoverability of each eigenvalue and the observation locations. We propose various reconstruction algorithms with theoretical guarantees, generalizing the classical Prony method, ESPRIT, and matrix pencil method. We test the algorithms over a variety of examples with applications to graph signal processing, disease modeling and a real-human motion dataset. The numerical results validate our theoretical results and demonstrate the effectiveness of the proposed algorithms. 
    more » « less